A particle moves with a velocity $\vec v\, = \,5\hat i - 3\hat j + 6\hat k\,\,m/s$ under the influence of a constant force $\vec F\, = \,10\hat i + 10\hat j + 20\hat k$. Instantaenous power will be ............... $\mathrm{J} / \mathrm{s}$
$200$
$40$
$140$
$170$
Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square. They move with equal uniform speed $v$ towards the intersection of the diagonals. After collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision
A body moving with speed $v$ in space explodes into two piece of masses in the ratio $1 : 3.$ If the smaller piece comes to rest, the speed of the other piece is
A bullet of mass $m$ moving with velocity $v$ strikes a suspended wooden block of mass $M$. If the block rises to a height $h$, the initial velocity of the bullet will be
A rifle bullets loses $\left(\frac{1}{20}\right)^{th}$ of its velocity in passing through a plank. Assuming that the plank exerts a constant retarding force, the least number of such planks required just to stop the bullet is .............
A uniform chain of length $2\, m$ is kept on a table such that a length of $60\, cm$ hangs freely from the edge of the table. The total mass of the chain is $4\, kg$. What is the work done in pulling the entire chain on the table ? ................ $\mathrm{J}$